NTIA/NIST Spectrum Monitoring Pilot Program

Jeff Wepman – NTIA/ITS

Mike Cotton, Program Lead – NTIA/ITS

Michael Souryal, Program Lead – NIST/CTL

Overview

- Program Goals & Major Tasks
- Deployment of RF Sensor Systems
- Measured Spectrum Occupancy Database (MSOD)
- RF Sensor Systems Focus for presentation
 - Sensor System Architecture
 - COTS Sensor Classification
 - RF Performance Testing

Program Goals

- Develop infrastructure
 - Acquire, amass spectrum data
- Data avail to spectrum community via web
- Establish, implement best practices spectrum data acquisition

Major Program Tasks

- Design, develop, deploy sensor systems to collect spectrum usage data
- Develop sensor system network
 - Spectrum data acquired by network of RF sensor systems
- Develop MSOD
- RF Performance testing of COTS sensors
 - Goal: build cost/capability/performance matrix

Sensor System Network

ITS Boulder (Local) Site

Remote Sites

RF Sensor System Deployment

- Network of six 3.5 GHz sensor systems
 - Maritime radar monitoring
 - Along East and West coasts
- Sensor system deployment status
 - Current: Virginia Beach
 - FY15: San Diego, San Francisco, Florida Keys
 - FY16: Astoria, Cape Cod

RF Sensor System Deployment

- Currently developing prototype sensor system
 - LTE monitoring in 1695 1710 MHz & adjacent bands
- Possible deployment: NOAA Meteorological Satellite Earth Stations
- Deployment planned FY16

Measured Spectrum Occupancy Database

Measured Spectrum Occupancy Database

- Standardized data transfer specification
 - Based on Java Script Object Notation JSON
 - Flexible allows different types of data
- Provides threshold-based band occupancy statistics & amplitude vs. freq. data
- Test environment for authorized users
 - Planned Jan 2016

General Sensor System Architecture

COTS Sensor Classification

- Classify sensors into 5 tiers
- Differentiated by capability, intended purpose, loosely by cost

High Tier	General purpose lab equipment Spectrum, vector signal, real-time analyzers Use superhet front-end arch Cost: ~ \$25,000 or more
Mid Tier	DFT-based sensors Unattended RF data collection & outdoor use Use superhet RF front-end arch Cost: ~ \$15,000 - \$20,000

COTS Sensor Classification

Low Tier	Designed as general experimental SDR receivers Can configure to operate like mid-tier sensors Not for outdoor use Use direct conversion front-end for cost savings Cost: ~ \$1000 - \$5000
Very Low Tier	Reduced cost versions of low-tier sensors Geared toward hobbyist Single IC RF front-ends Cost: a few hundred dollars
Extremely Low Tier	DVB-T television USB stick receiver Can be modified to be SDR receiver Cost: ~ \$20

RF Performance Testing

- Two types COTS sensor tests
- Fundamental RF performance tests
 - Example: DANL, Signal Overload, TOI Tests
- Detection of simulated real world signals
 - Example: Compare band occupancy for simulated SPN-43 radar emissions
- Motivation for testing

RF Performance Testing

- Increasing number of spectrum monitoring efforts – wide variety sensors
- Measured spectrum data integrity crucial
 - Spurious responses or intermod generated must not be mistaken real signals
- Comparing specs between mfr. difficult
 - Use different parameters to specify sensors
 - Even with same parameters, conditions likely different

RF Performance Testing

- Reduction in sensor cost
 - Desirable/necessary new paradigm spectrum monitoring
 - Continuous, long-term spectrum monitoring
 - Many locations simultaneously
- Performance testing important
 - Is lower-tier/cost sensor suitable for given monitoring scenario?
- Examples

DANL Test Examples – High & Mid -Tier

Frequency (MHz)

Phase Noise Test Example

Conclusions

- Deploying network of six 3.5 GHz sensor systems
- Developing prototype LTE sensor system
- MSOD test environment planned Jan 2016
- Developing comprehensive RF perf. test plan
- Beginning to implement tests in laboratory
- RF performance of sensors important
 - Integrity of spectrum data crucial
- Clearly see signals that are actually present
- Must not count sensor artifacts as signals!

